SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Förlin Lars 1950 ) ;mspu:(article);pers:(Förlin Lars 1950);lar1:(gu);pers:(Kristiansson Erik 1978)"

Search: WFRF:(Förlin Lars 1950 ) > Journal article > Förlin Lars 1950 > University of Gothenburg > Kristiansson Erik 1978

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Asker, Noomi, 1968, et al. (author)
  • Biomarker responses in eelpouts from four coastal areas in Sweden, Denmark and Germany
  • 2016
  • In: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 120, s. 32-43
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of possible chemical impacts on coastal fish populations in the Baltic Sea, Kattegat and Skagerrak, the viviparous eelpout (Zoarces viviparus) was used as sentinel species in two major sampling campaigns (spring and autumn) in 16 different coastal sites. Condition factor (CF), liver somatic index (LSI), gonad somatic index (GSI) were measured and the activity of the hepatic enzymes ethoxyresorufin-O-deethylase (EROD), glutathione reductase GR), glutathione S-transferase (GST), catalase (CAT) and muscular activity of acetylcholinesterase (AChE) were assessed. PAH metabolites in bile were also analyzed. The most notable finding in the data set was the low EROD activity in eelpouts collected at the relatively polluted region in Germany compared to the other regions, which could be due to an inhibition of the CYP1A-system or to adaptation to chronic exposure of pollutants in this area. Additionally, low AChE activity was noted in the German region in the autumn campaign and low AChE activity detected in the Danish region in the spring campaign. These differences suggest possible season-specific differences in the use and release of AChE-inhibiting chemicals in the Danish and German regions. Clustering of biomarkers on site level indicated a relationship between CF and GSI and suggested that sites with a high CF contained eelpout that put a larger effort into their larvae development. Clustering of the oxidative stress markers GR, GST and CAT on the individual level reflected a possible coordinated regulation of these enzymes. Overall, the results support the importance of taking into account general regional differences and seasonal variation in biomarker activity when monitoring and assessing the effects of pollution. Despite the expected seasonal variation for most of the measured endpoint, several markers (GSI, EROD and CF) vary similarly between all selected sites in both spring and autumn. This suggests that the differences between sites for these endpoints are independent of season.
  •  
2.
  • Asker, Noomi, 1968, et al. (author)
  • Hepatic transcriptome profiling indicates differential mRNA expression of apoptosis and immune related genes in eelpout (Zoarces viviparus) caught at Göteborg harbor, Sweden
  • 2013
  • In: Aquatic Toxicology. - : Elsevier BV. - 0166-445X .- 1879-1514. ; 130-131, s. 58-67
  • Journal article (peer-reviewed)abstract
    • The physiology and reproductive performance of eelpout (Zoarces viviparus) have been monitored along the Swedish coast for more than three decades. In this study, transcriptomic profiling was applied for the first time as an exploratory tool to search for new potential candidate biomarkers and to investigate possible stress responses in fish collected from a chronically polluted area. An oligonucleotide microarray with more than 15,000 sequences was used to assess differentially expressed hepatic mRNA levels in female eelpout collected from the contaminated area at Göteborg harbor compared to fish from a national reference site, Fjällbacka. Genes involved in apoptosis and DNA damage (e.g., SMAC/diablo homolog and DDIT4/DNA-damage-inducible protein transcript 4) had higher mRNA expression levels in eelpout from the harbor compared to the reference site, whereas mRNA expression of genes involved in the innate immune system (e.g., complement components and hepcidin) and protein transport/folding (e.g., signal recognition particle and protein disulfide-isomerase) were expressed at lower levels. Gene Ontology enrichment analysis revealed that genes involved biological processes associated with protein folding, immune responses and complement activation were differentially expressed in the harbor eelpout compared to the reference site. The differential mRNA expression of selected genes involved in apoptosis/DNA damage and in the innate immune system was verified by quantitative PCR, using the same fish in addition to eelpout captured four years later. Thus, our approach has identified new potential biomarkers of pollutant exposure and has generated hypotheses on disturbed physiological processes in eelpout. Despite a higher mRNA expression of genes related to apoptosis (e.g., diablo homolog) in eelpout captured in the harbor there were no significant differences in the number of TUNEL-positive apoptotic cells between sites. The mRNA level of genes involved in apoptosis/DNA damage and the status of the innate immune system in fish species captured in polluted environments should be studied in more detail to lay the groundwork for future biomonitoring studies.
  •  
3.
  • Cuklev, Filip, 1981, et al. (author)
  • Diclofenac in fish : blood plasma levels similar to human therapeutic levels affect global hepatic gene expression
  • 2011
  • In: Environmental Toxicology and Chemistry. - New York : Pergamon. - 0730-7268 .- 1552-8618. ; 30:9, s. 2126-2134
  • Journal article (peer-reviewed)abstract
    • Diclofenac is a non-steroidal anti-inflammatory drug frequently found in the aquatic environment. Previous studies have reported histological changes in the liver, kidney and gills of fish at concentrations similar to those measured in treated sewage effluents (approximately 1 µg/L). Analyses or predictions of blood plasma levels in fish allow a direct comparison with human therapeutic plasma levels, and may therefore be used to indicate a risk for pharmacological effects in fish. To relate internal exposure to a pharmacological interaction we investigated global hepatic gene expression together with bioconcentration in blood plasma and liver of rainbow trout (Oncorhynchus mykiss) exposed to waterborne diclofenac. At the highest exposure concentration (81.5 µg/L) the fish plasma concentration reached approximately 88% of the human therapeutic levels (C(max) ) after two weeks. Using an oligonucleotide microarray followed by quantitative PCR we found extensive effects on hepatic gene expression at this concentration, and some genes were found to be regulated down to the lowest concentration tested (1.6 µg/L) corresponding to approximately 1.5% of the human C(max) . Thus, at concentrations detected in European surface waters, diclofenac can affect the expression of multiple genes in exposed fish. Functional analysis of differentially expressed genes revealed effects on biological processes such as inflammation and immune response, in agreement with the mode of action of diclofenac in mammals. In contrast to some previously reported results, the bioconcentration factor was found to be stable (4.02 ± 0.75 for blood plasma and 2.54 ± 0.36 for liver) regardless of the water concentration. Environ. Toxicol. Chem. © 2011 SETAC.
  •  
4.
  • Cuklev, Filip, 1981, et al. (author)
  • Does ketoprofen or diclofenac pose the lowest risk to fish?
  • 2012
  • In: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 229-230, s. 100-106
  • Journal article (peer-reviewed)abstract
    • Ketoprofen and diclofenac are non-steroidal anti-inflammatory drugs (NSAIDs) often used for similar indications, and both are frequently found in surface waters. Diclofenac affects organ histology and gene expression in fish at around 1 mu g/L. Here, we exposed rainbow trout to ketoprofen (1, 10 and 100 mu g/L) to investigate if this alternative causes less risk for pharmacological responses in fish. The bioconcentration factor from water to fish blood plasma was <0.05(4 for diclofenac based on previous studies). Ketoprofen only reached up to 0.6 parts per thousand of the human therapeutic plasma concentration, thus the probability of target-related effects was estimated to be fairly low. Accordingly, a comprehensive analysis of hepatic gene expression revealed no consistent responses. In some contrast, trout exposed to undiluted, treated sewage effluents bioconcentrated ketoprofen and other NSAIDs much more efficiently, according to a meta-analysis of recent studies. Neither of the setups is however an ideal representation of the field situation. If a controlled exposure system with a single chemical in pure water is a reasonable representation of the environment, then the use of ketoprofen is likely to pose a lower risk for wild fish than diclofenac, but if bioconcentration factors from effluent-exposed fish are applied, the risks may be more similar.
  •  
5.
  • Förlin, Lars, 1950, et al. (author)
  • mRNA Expression and Biomarker Responses in Perch at a Biomonitoring Site in the Baltic Sea - Possible Influence of Natural Brominated Chemicals
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Journal article (peer-reviewed)abstract
    • Perch (Perca fluviatilis) has been used in biological effect monitoring in a program for integrated coastal fish monitoring at the reference site Kvadofjarden along the Swedish east coast, which is a site characterized by no or minor local anthropogenic influences. Using a set of physiological and biochemical endpoints (i.e., biomarkers), clear time trends for "early warning" signs of impaired health were noted in the perch from this site, possibly as a result of increased baseline pollution. The data sets also showed relatively large variations among years. To identify additional temporal variation in biological parameters, global mRNA expression studies using RNA sequencing was performed. Perch collected in 2010 and 2014 were selected, as they showed variations in several biomarkers, such as the activity of the detoxification enzyme CYP1A (EROD), the plasma levels of vitellogenin, markers for oxidative stress, white blood cells count and gonad sizes. The RNA sequencing study identified approximately 4800 genes with a significantly difference in mRNA expression levels. A gene ontology enrichment analysis showed that these differentially expressed genes were involved in biological processes such as complement activation, iron ion homeostasis and cholesterol biosynthetic process. In addition, differences in immune system parameters and responses to the exposure of toxic substances have now been verified in two different biological levels (mRNA and protein) in perch collected in 2010 and 2014. Markedly higher mRNA expression of the membrane transporter (MATE) and the detoxification enzyme COMT, together with higher concentrations of bioactive naturally produced brominated compounds, such as brominated indoles and carbazoles, seem to indicate that the perch collected in 2014 had been exposed to macro- and microalga blooming to a higher degree than did perch from 2010. These results and the differential mRNA expression between the 2 years in genes related to immune and oxidative stress parameters suggest that attention must be given to algae blooming when elucidating the well-being of the perch at Kvadofjarden and other Baltic coastal sites.
  •  
6.
  • Gunnarsson, Lina-Maria, 1977, et al. (author)
  • Pharmaceutical industry effluent diluted 1:500 affects global gene expression, cytochrome P4501A activity and plasma phosphate in fish
  • 2009
  • In: Environmental Toxicology and Chemistry. - : Society of Environmental Toxicology and Chemistry (SETAC). - 0730-7268 .- 1552-8618. ; 28:12, s. 2639-2647
  • Journal article (peer-reviewed)abstract
    • Patancheru, near Hyderabad, India, is a major production site for the global bulk drug market. Approximately 90 manufacturers send their wastewater to a common treatment plant in Patancheru. Extraordinary high levels of a wide range of pharmaceuticals have recently been demonstrated in the treated effluent. As little as 0.2% of this effluent can strongly reduce the growth rate of tadpoles, but the underlying mechanisms of toxicity are not known. To begin addressing how the effluent affects aquatic vertebrates, rainbow trout (Oncorhynchus mykiss) were exposed to 0.2% effluent for five days. Several physiological endpoints, together with effects on global hepatic gene expression patterns, were analyzed. The exposed fish showed both an induction of hepatic cytochrome P450 1A (CYP1A) gene expression, as well as enzyme activity. Clinical blood chemistry analyses revealed an increase in plasma phosphate levels, which in humans indicates impaired kidney function. Several oxidative stress-related genes were induced in the livers; however, no significant changes in antioxidant enzyme activities or in the hepatic glutathione levels were found. Furthermore, estrogen-regulated genes were slightly up-regulated following exposure, and moderate levels of estriol were detected in the effluent. The present study identifies changes in gene expression triggered by exposure to a high dilution of the effluent, supporting the hypothesis that these fish are responding to chemical exposure. The pattern of regulated genes may contribute to the identification of mechanisms of sub-lethal toxicity, as well as illuminate possible causative agents.
  •  
7.
  • Gunnarsson, Lina-Maria, 1977, et al. (author)
  • Sensitive and robust gene expression changes in fish exposed to estrogen – a microarray approach
  • 2007
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 8:149
  • Journal article (peer-reviewed)abstract
    • Background Vitellogenin is a well established biomarker for estrogenic exposure in fish. However, effects on gonadal differentiation at concentrations of estrogen not sufficient to give rise to a measurable vitellogenin response suggest that more sensitive biomarkers would be useful. Induction of zona pellucida genes may be more sensitive but their specificities are not as clear. The objective of this study was to find additional sensitive and robust candidate biomarkers of estrogenic exposure. Results Hepatic mRNA expression profiles were characterized in juvenile rainbow trout exposed to a measured concentration of 0.87 and 10 ng ethinylestradiol/L using a salmonid cDNA microarray. The higher concentration was used to guide the subsequent identification of generally more subtle responses at the low concentration not sufficient to induce vitellogenin. A meta-analysis was performed with data from the present study and three similar microarray studies using different fish species and platforms. Within the generated list of presumably robust responses, several well-known estrogen-regulated genes were identified. Two genes, confirmed by quantitative RT-PCR (qPCR), fulfilled both the criteria of high sensitivity and robustness; the induction of the genes encoding zona pellucida protein 3 and a nucleoside diphosphate kinase (nm23). Conclusion The cross-species, cross-platform meta-analysis correctly identified several robust responses. This adds confidence to our approach used for identifying candidate biomarkers. Specifically, we propose that analyses of an nm23 gene together with zona pellucida genes may increase the possibilities to detect an exposure to low levels of estrogenic compounds in fish.
  •  
8.
  • Kristiansson, Erik, 1978, et al. (author)
  • Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing
  • 2009
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 10:345
  • Journal article (peer-reviewed)abstract
    • Background The teleost Zoarces viviparus (eelpout) lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. Results In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback) were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.
  •  
9.
  • Lennquist, Anna, 1978, et al. (author)
  • Colour and melanophore function in rainbow trout after long term exposure to the new antifoulant medetomidine
  • 2010
  • In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 80:9, s. 1050-1055
  • Journal article (peer-reviewed)abstract
    • Medetomidine is a new antifouling agent, and its effects in non-target aquatic organisms have been investigated. Earlier short-term studies in fish have shown a skin lightening response to medetomidine, but effects after chronic exposure have not been studied. In fish, the dark pigment melanin is contained within specialized cells, melanophores. Medetomidine binds to the melanophore α2-adrenoceptor, which stimulates pigment aggregation resulting in the light appearance. In the present study, rainbow trout (Oncorhynchus mykiss) was long-term exposed to 0.5 and 5.0 nM of medetomidine via water for 54 d. The fish were then photographed for paleness quantification and the images were analyzed using ImageJ analysis software. Additionally, scales were removed and used for in vitro function studies of the melanophores, monitoring the response to melanophore stimulating hormone (MSH) and subsequent medetomidine addition. The number of melanophores was also investigated. As a result of the medetomidine exposure, fish from the 5 nM treatment were significantly paler than control fish and the melanophores from these fishes were also more aggregated. Melanophores from all the treatments were functional, responding to MSH by dispersion and to subsequent medetomidine by aggregation. However, the results indicate a difference in sensitivity among treatments. The number of melanophores in the scales did not change significantly after long term exposure to medetomidine. These results suggest that the observed paleness may be reversible, even after chronic exposure.
  •  
10.
  • Lennquist, Anna, 1978, et al. (author)
  • Physiology and mRNA expression in rainbow trout (Oncorhynchus mykiss) after long-term exposure to the new antifoulant medetomidine.
  • 2011
  • In: Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. - : Elsevier BV. - 1532-0456. ; 154:3, s. 234-41
  • Journal article (peer-reviewed)abstract
    • Medetomidine is under evaluation for use as an antifouling agent, and its effects on non-target aquatic organisms are therefore of interest. In this study, rainbow trout was exposed to low (0.5 and 5.0nM) concentrations of medetomidine for up to 54days. Recently we have reported on effects on paleness and melanophore aggregation of medetomidine in these fish. Here, specific growth rates were investigated together with a broad set of physiological parameters including plasma levels of growth hormone (GH), insulin-like growth factor-I (IGF-I) and leptin, glucose and haemoglobin (Hb), hematocrit (Ht), condition factor, liver and heart somatic indexes (LSI, HSI). Hepatic enzyme activities of CYP1A (EROD activity), glutathione S-transferases (GST) and glutathione reductase (GR) were also measured. Additionally, hepatic mRNA expression was analysed through microarray and quantitative PCR in fish sampled after 31days of exposure. Medetomidine at both concentrations significantly lowered blood glucose levels and the higher concentration significantly reduced the LSI. The mRNA expression analysis revealed few differentially expressed genes in the liver and the false discovery rate was high. Taken together, the results suggest that medetomidine at investigated concentrations could interfere with carbohydrate metabolism of exposed fish but without any clear consequences for growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view